
∂ is for Dialectica

Marie Kerjean and Pierre-Marie Pédrot

1 CNRS, LIPN, Université Sorbonne Paris Nord kerjean@lipn.fr
2 Inria pedrot@inria.fr

Dialectica was originally introduced by Gödel in a famous paper [7] as a
way to constructively interpret an extension of HA [1], but turned out to be a
very fertile object of its own. Judged too complex, it was quickly simplified by
Kreisel into the well-known realizability interpretation that now bears his name.
Soon after the inception of Linear Logic (LL), Dialectica was shown to factorize
through Girard’s embedding of LJ into LL, purveying an expressive technique
to build categorical models of LL [13]. In its logical outfit, Dialectica led to
numerous applications and was tweaked into an unending array of variations in
the proof mining community [10].

The modern way to look at Dialectica is however to consider it as a program
translation, or more precisely two mutually defined translations of the λ-calculus
exposing intensional information [14].

In a different scientific universe, Automatic Differentiation [8] (AD) is the
field that studies the design and implementation of efficient algorithms com-
puting the differentiation of mathematical expression and numerical programs.
Indeed, due to the chain rule, computing the differential of a sequence of expres-
sions involves a choice, namely when to compute the value of a given expression
and when to compute the value of its derivative. Two extremal algorithms coex-
ist. On the one hand, forward differentiation [16] computes functions and their
derivatives pairwise in the order they are provided, while on the other hand re-
verse differentiation [12] computes all functions first and then their derivative in
reverse order. Depending on the setting, one can behave more efficiently than the
other. Notably, reverse differentiation has been critically used in the fashionable
context of deep learning.

Differentiable programming is a rather new and lively research domain aim-
ing at expressing automatic differentiation techniques through the prism of the
traditional tools of the programming language theory community. As such, it has
been studied through continuations [15], functoriality [6], and linear types [4].
It led to a myriad of implementation over rich programming languages, proven
correct through semantics of higher-order differentiable functions [11]. Surpris-
ingly, these various principled explorations of automatic differentiation are what
allows us to draw a link between Dialectica and differentiation in logic.

The simple, albeit fundamental claim of this talk is that, behind its different
logical avatars, the Dialectica translation is in fact a reverse differentiation algo-
rithm, where the linearity and involutivity of differentiation have been forgotten.
In the domain of proof theory, differentiation has been very much studied from
the point of view of linear logic. This led to Differential Linear Logic [5] (DiLL),
differential categories [3], or the differential λ-calculus. To support our thesis



2 M. Kerjean and P.-M. Pédrot

with evidence, we will formally state a correspondence between each of these
objects and the corresponding Dialectica interpretation.

More generally, Dialectica is known for extracting quantitative information
from proofs [10], and this relates very much with the quantitative point of view
that differentiation has brought to λ-calculus [2]. Herbelin also notices at the
end of its paper realizing Markov’s rule through delimited continuations that
this axiom has the type of a differentiation operator [9]. If time permits, we will
explore the possible consequences of formally relating reverse differentiation and
Dialectica to proof mining and Herbelin’s work in the conclusion.

References

1. Avigad, J., Feferman, S.: Gödel’s functional (‘dialectica’) interpretation. In: Buss,
S.R. (ed.) Handbook of Proof Theory. Elsevier Science Publishers, (1998)

2. Barbarossa, D., Manzonetto, G.: Taylor subsumes scott, berry, kahn and plotkin.
Proc. ACM Program. Lang. 4(POPL), 1:1–1:23 (2020).

3. Blute, R.F., Cockett, J.R.B., Seely, R.A.G.: Differential categories. Math. Struc-
tures Comput. Sci. 16(6) (2006).

4. Brunel, A., Mazza, D., Pagani, M.: Backpropagation in the simply typed lambda-
calculus with linear negation. POPL (2020).

5. Ehrhard, T., Regnier, L.: Differential interaction nets. Theoretical Computer Sci-
ence 364(2) (2006)

6. Elliott, C.: The simple essence of automatic differentiation. In: Proceedings of the
ACM on Programming Languages (ICFP) (2018).

7. Gödel, K.: Über eine bisher noch nicht benützte Erweiterung des finiten Stand-
punktes. Dialectica 12, 280–287 (1958)

8. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Society for Industrial and Applied Mathematics, USA,
second edn. (2008)

9. Herbelin, H.: An intuitionistic logic that proves markov’s principle. LICS 2010.
10. Kohlenbach, U.: Applied Proof Theory - Proof Interpretations and their Use in

Mathematics. Springer Monographs in Mathematics, Springer (2008).
11. Krawiec, F., Peyton Jones, S., Krishnaswami, N., Ellis, T., Eisenberg, R.A.,

Fitzgibbon, A.: Provably correct, asymptotically efficient, higher-order reverse-
mode automatic differentiation. Proc. ACM Program. Lang. 6(POPL) (jan 2022).

12. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer-
ical Mathematics 16, 146–160 (1976)

13. de Paiva, V.: A dialectica-like model of linear logic. In: Category Theory and
Computer Science, (1989)

14. Pédrot, P.: A functional functional interpretation. CSL-LICS ’14, Vienna, Austria,
July 14 - 18, 2014.

15. Wang, F., Zheng, D., Decker, J., Wu, X., Essertel, G.M., Rompf, T.: Demystifying
differentiable programming: Shift/reset the penultimate backpropagator. 3(ICFP),
(2019).

16. Wengert, R.E.: A simple automatic derivative evaluation program. Commun. ACM
7(8), 463–464 (1964).


